An Investigation Of Silver Nanoparticles With Its Toxicological Effects And Applications

Anushka Tyagi¹, Dr. N. G. Raghavendra Rao¹*, Deepak Yadav², Kunal Kanojia¹

¹KIET School of Pharmacy, KIET Group of Institutions, Delhi- NCR, Ghaziabad, Uttar Pradesh, 201206, India.
²Sunpharma Limited, Gurgaon, India.

*Corresponding Authors: Dr. N. G. Raghavendra Rao
Email: raghavendra.rao@kie.edu

Abstract
Researchers have been studying nano-particles of silver due to their characteristic attributes (e.g., size, shape, bactericidal, and electrical characteristics). Nano-particles of silver are one of the most important and fascinating nanoscale elements among the many nano-particles used for biological purposes. Nanoscience and nanotechnology, especially in biomedicine, rely heavily on nanoparticles of silver. The physical, chemical and biological production of silver nanoparticles is discussed in this paper. Majorly focusing on biological methods, as they are environmentally friendly and less toxic. We have discussed the characteristics of silver nano-particles and various techniques for determining their qualities, concluding with their application in various fields. As a result, the main purpose of this review article is to focus on the current condition and potential.

Keywords: Nano-particles, Applications, Characterization, Synthesis, Toxicity.

INTRODUCTION
Nano-particles contain a collection of molecules with a dimension range of 1 to 100 nanometers. The suffix 'nano' denotes a billion (10⁹) of a unit. Many scientists have been concerned about silver nano-particles (AgNPs) owing to their distinct qualities (e.g. size and shape, antibacterial and electrochemical capabilities). For its lower softening range, AgNPs have a wide range of applications and are simple to make. Cosmetics, pharmaceuticals, electronics, optics, textiles, food, catalysis, paint drug-gene delivery, light emitters, and photoelectrochemical applications (1).

Silver is widely available and widely used in commercial applications due to its tough properties such as conduction, as well as in medicine due to its antibacterial action; additionally, it has no negative effects on the individual (2). Silver has bactericidal activity against a variety of microorganisms, and this impact can be seen at low concentrations. Silver's bactericidal effect is mostly attributed to Ag ions, which are produced from silver-containing substances and bind to the thiol variety of enzymes and proteins, transforming cell respiration and killing bacteria. Whenever halogen ions like bromine, iodine, chlorine, and others are present in the surroundings, salts adhere to them and precipitate. As a result, their hydrophilicity and bactericidal action have been lost. Whenever loose, unattached silver atoms are employed entirely, their bactericidal mobility is quite limited. To get the better of this matter AgNPs, silver-containing tiny glass granules and chitin-chitosan combinations have recently being developed to overcome this problem. Silver atoms are reduced in these compositions, resulting in antibacterial action. Season after season, roughly 320 tonnes of Ag nano-particles are manufactured and used in nano diagnostic imaging, bio sensors, and dietary goods, according to reports, different metal ions and metal Nano-materials have been discovered to be efficient in stopping the growth in several compelling tiny creatures. According to Das et al., tiny nano-particles are effective development regulators for a variety of microorganisms. Tiny nano-particles have
also been demonstrated to be significantly harmful than larger ones. Ag nano-particles, made by silk sericin (SS), an aquatic-solvable protein take out from silk worms at pH 11, incorporate hydroxyl polymers by remarkably polar gatherings like carbonyl group, hydroxyl, amino workable groups, and these compounds act as a reductant for silver nitrate to generate basic silver. According to Aram wit et al., the hydroxyl radicals of silk serin should form a combination with silver atoms, preventing their agglomeration or deposition. Also, the bactericidal activity of SS-capped Ag nano-particles over gramme +ve and gramme –ve bacteria was investigated, and it was discovered that the MIC including all these kinds of bacteria, like Bacillus subtilis, staphylococcus aureus, pseudomonas aeruginosa and Escherichia coli seems to be between 0.0001 and 0.008mm(3).

NANOPARTICLE
A molecule with such a length scale of 1-100 nm referred to as a "nano-particle." Cu, silvery, gold, mg, titanium, and alginate are presently has used to create comparable Metallic nano-particles. Nano-particles come in a variety of shapes and sizes, including spherical, cylindrical, platelet, and tubing. Nano-particles employed for a variety of reasons, including medicinal therapies and power retention in sun and oxides fueled cells, as well as broad incorporation into everyday items such as skincare and clothing (4).

Types of Nanoparticles
Organic nano-particles, which include polymers, lipid membranes, and malware particles, and inorganic nano-particles, which include golden NP, oxide - based, and nano-structured materials, are divided into two categories depending on the constituents that make up the architecture. Disposable, non-toxic, and bio-friendly organic compounds abound. On the other hand, inorganic substances have reduced particle sizes, increased stability, regulated adjustability, greater permeation, heavy drug penetrations, and a regulated distribution profile (5) as shown in Figure (1).

Figure 1: Basic Area of Nanoparticles (Shape, Size, Surface, Material)

SILVER NANO-PARTICLE SYNTHESIS METHODS:
Approaches to Ag nano-particles synthesis: - Bottom up and top down
In the end, two approaches were used to make AgNPs: "bottom up" and "top down". Bottom up refers to a substance's development from the bottom up, molecules by molecules, particle by particle, or group by group. Cutting up a huge piece of substance to make a nano-sized atom seen from the top down (6).

Figure 2: Approaches for Silver Nanoparticle Synthesis (Bottom up and Top down)

By material and biological methods, nano-particles can be consolidated by free independent – gathering of atoms to create a fresh nucleus, which then develops into nanomicron molecules in the "Bottom up" technique.

The nanoparticles are generally created in the "Down Up" approach by dehumidification, or by breaking apart large granules into tiny granules by crushers using various mechanical methods such as milling and crushing.
Physical method
Laser ablation and evaporation-condensation techniques are generally significant physical approaches. Although the physical approach tries not to need any deadly and very reactive chemicals, it usually takes a rapid processing time. Capping agents are not used in this approach, i.e., agglomeration is a great challenge. Evaporation–condensation is a technology that employs a gaseous phase and a cylindrical heater to generate nanoscale spheres at high ambient pressures. This approach has been used to merge many nanoscale spheres made of various substances, such as Au, Ag, and Pbs (7).

Chemical method
Chemical reduction, electrical and chemical, illumination chemical, and pyrolysis are the different types of chemical methods used to make nano-particles (8).
In the chemical approach, freshwater or organic solutions are utilised to make Ag nanoparticles. The lowering of silver salts is primarily divided into 2 levels: (1) nucleation and (2) subsequent growth. Silver ions are lowered in the aquatic medium, getting an electron from the reductant and moving positively to a zero condition, accompanied by crystal growth. This causes coarse aggregation into oligomeric groupings, resulting in colloid Ag nano-particles. Stabilizing compounds are incorporated onto the interface of AgNPs to prevent them from clumping together. Embulsifiers or capping agents like chitosan, cellulose, or polymers like PVP, PEG, and polymethyl methacrylate can be employed to stabilise or avoid Nps aggregation and oxidation (PMMA) (9).

The chemical process has a higher yield than the mechanical method, which has a lower yield. The chemical creation of NPs has several benefits, including simplicity of manufacture, low cost, and high return. Chemical lowering agents, on the other hand, are hazardous to living beings (10).

Biological method
Biological production for nano-particles is also referred to as "green synthesis," and it is completely safe for living things. The biological production of Ag nanoparticles from plant extracts or microorganisms has emerged as a viable alternative to the physiochemical production methods. These pathways are also well known for being simple, environmentally benign, and readily scaled-up for great yield and output. These methods are not costly, and they do not necessitate a large power bill. As a result, these methods also lower the price of power. In the development of nanomedicine, the synthesis of metal and metal oxide nano-particles utilising biotic agents such as bacterium, fungus, yeast, plants, and microalgae has gained prominence (11).

Production of silver nanoparticles by bacteria
The Pseudomonas stutzeri AG259 strain, which was secluded from Ag mining, was used to generate the earliest corroboration of a bacterium generating silver nanoparticles. Few microbes can persist at high metal ion levels and propagate under those circumstances, and this is related to their resistance to that metal. Bioaccumulation, extracellular complexation or metallic deposition, modification of dissolution and injuriousness via reduction or oxidation, biosorption, efflux mechanisms, and the lack of particular metal transport systems are all processes implicated in resistance. There is also the possibility that, while these life forms can flourish in lower amounts of metallic ions, their exposure to higher amounts can induce harm (12).

The existence of the nitrate-reducing enzyme is widely acknowledged as a mechanism for silver biosynthesis. Nitrate is transformed to nitrite through an enzymatic reaction. The existence of alpha-nicotinamide adenine dinucleotide phosphate condensed form in need of nitrate reduction in vitro Ag production utilising bacterium would avoid the downstream clarifying stage that is required in similar cases. Some of the examples mentioned in the table 1 (13).

Production of silver nanoparticles by fungus
Fungi, unlike bacterium, can make an enormous volume of nano-particles since they discharge large amounts of proteins, which
leads to high nanoparticle synthesis. The following steps are reported to be involved in the creation of Ag nano-particles by fungi: Entrapment of silver ions on the superficial of fungal cells is followed by further synthesis of metallic nanoparticles by enzymatic reactions in the fungal framework. Extracellular enzymes like anthraquinones and naphthoquinones are thought to speed up the process. The NADPH-dependent nitrate reducing agent and a shuttling quinine outer layer of the cell mechanism are thought to be in charge of nanoparticle generation in F. oxysporum. Some of the examples mentioned in the table 1(14).

Synthesis of silver nanoparticles by plants

Botanical extracts have several advantages over microbes in the amalgamated, including being easily available, secure, and harmless most of the moment, having a wide range of compounds that can help in the lessening of Ag particles, and being faster than bacteria in the amalgamated. Plant-assisted reduction owing to phytonutrients is the key device evaluated for the connection. The main phytonutrients mentioned are terpenes, flavonoids, ketone, CHO, CONH, and COOH. Aquatic-soluble phytonutrients such as flavonoids, naturally occurring acids, and quinones are responsible for the rapid reduction of particulates. According to research, desert plants include emodin, an anthra-quinone that undergoes tautomerism, resulting in the formation of silver nanoparticles. It was discovered that mesophytes include 3 different kinds benzoquinones: dietchequinone, cyperoquinone, remirin. It was proposed that phytonutrients be used straight in the reduced form of particulate and the production of AgNps. Some of the examples mentioned in the table 1(15).

Table 1: Briefing of Source mediated synthesis of nanoparticles (Plant, Bacteria, and Fungus)

<table>
<thead>
<tr>
<th>Source name</th>
<th>Size and shape</th>
<th>Part</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tea extract</td>
<td>20–90 nm, Spherical</td>
<td>Leaves</td>
<td>(16)</td>
</tr>
<tr>
<td>Centella asiatica</td>
<td>30–50 nm, Spherical</td>
<td>Leaves</td>
<td>(17)</td>
</tr>
<tr>
<td>Allium sativum</td>
<td>4-22 nm, Spherical</td>
<td>Leaves</td>
<td>(18)</td>
</tr>
<tr>
<td>Aloe vera</td>
<td>50–350 nm, Triangular & Spherical</td>
<td>Leaves</td>
<td>(19)</td>
</tr>
<tr>
<td>Daturum metel</td>
<td>16–40 nm, Quasilinear superstructures</td>
<td>Leaves</td>
<td>(20)</td>
</tr>
<tr>
<td>Bacteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli (E. coli)</td>
<td>42.2–89.6 nm; spherical</td>
<td>Extracellular</td>
<td>(21)</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>15–37 nm; spherical</td>
<td>Extracellular</td>
<td>(22)</td>
</tr>
<tr>
<td>Idiomarinia sp.</td>
<td>25 nm</td>
<td>Intracellular</td>
<td>(23)</td>
</tr>
<tr>
<td>Aeromonas sp. SH10</td>
<td>6.4 nm</td>
<td>Extracellular and intracellular</td>
<td>(24)</td>
</tr>
<tr>
<td>Bacillus sp.</td>
<td>5–15 nm</td>
<td>Extracellular and periplasmic space</td>
<td>(25)</td>
</tr>
<tr>
<td>Fungus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrophomina phaseolina</td>
<td>5–40 nm, spherical</td>
<td>Cell-free filtrate</td>
<td>(26)</td>
</tr>
<tr>
<td>Penicillium brevicae</td>
<td>58.35 ± 17.88 nm</td>
<td></td>
<td>(27)</td>
</tr>
<tr>
<td>Trichoderma asperellum</td>
<td>13–18 nm; nano crystalline</td>
<td>Extracellular</td>
<td>(28)</td>
</tr>
<tr>
<td>Aspergillus faves</td>
<td>8.92 nm; spherical</td>
<td>Cell wall</td>
<td>(29)</td>
</tr>
<tr>
<td>P. nalgiovense AJ12</td>
<td>25 ± 2.8 nm; spherical</td>
<td>Cell-free filtrate</td>
<td>(30)</td>
</tr>
</tbody>
</table>

TOXICITY OF SILVER NANOPARTICLES

Ag nano-particles’ one-of-a-kind physio-chemical qualities consider them a good candidate for a variety of daily activities, and their antibacterial and reducing characteristics make them a wonderful competitor for several clinical applications. Despite this, some research and publications claim that nano silver, like the weather, can have negative effects on individuals.

It is estimated that massive amounts of Ag are released into the environment as a result of modern waste, and that the harmfulness of Ag in the environment is largely due to loose Ag particles in the fluid phase. The negative impact of unrestricted Ag particles on people and all existing things comprises long-term yellowy blue gloomy darkening of the skin or eyes (argyrosis), and revelation to solubilized Ag blends can cause toxic impacts such as kidney and liver damage, increased incidence...
of eye, skin, cardiovascular, digestive disorders, and unfavorable modifications in white blood cells (31).

Nanotechnology Ag has been gaining popularity since the dawn of the 21st century and is now being used in a variety of fields, including medicine. In any event, there have been reports of nanoparticles of silver being unable to distinguish between different types of tiny creatures, resulting in the obliteration of ecologically important microbes. Beyond a question, few tests have been conducted to determine the toxicity of nanoscale Ag. In vitro poisonousness testing of Ag nanoparticles in mouse liver revealed that indeed minimal exposure to Ag nano-particles increased oxidative stress and hampered mitochondrial activity in one study. In vitro, mouse germ cells were immature bacteria also poisoned by Ag nano-particles, which hampered mitochondrial function and triggered spilling via cellular walls. Whole nano silver is thought to be more cytotoxic than asbestos(32). At fixings that don't limit Na, k, ATP, or mitochondria function, Ag particles cause alterations in the permeation of the cell membrane to na+ and k+ particles. According to the research, nano silver can also have bad impact on the growth and cytokine articulation of peripheral blood mononuclear cells. Nanosilver is also recognised to have a severe negative impact on the male reproductive structure. Nano silver has been found to breach the blood-testicles barrier and remain in the testicular, where it has a negative impact on spermatozoa. Furthermore, even inexpensive Ag-based treatments have been shown to have a positive impact on several exploration approaches. In vivo studies on the orally poisonousness of nanoscale Ag in mice revealed that the hepatic was the target organ for nanoscale Ag in mice. Clinical and pathological examinations also revealed that the inquiry animals had a greater incidence of biliary channel hyperplasia, even without corruption, fibrosis, and coloration. Ag is also said to arrive when nano-particles are stored for a period of duration, according to research. As a result, it is necessary to state that grown nano-silver is more poisonous than fresh nanotechnology Ag(33).

Due to its antibacterial activity, Nanotechnology Ag can block the growth of some 'well-disposed' tiny bacteria in the mud. Ag can disrupt the nitrogen removal process, which involves the transformation of nitrate to N2 gas that is crucial for vegetation, by causing harmful repercussions for denitrifying microorganisms. Environmental denitrification can be lost as vegetation viability declines, resulting in eutrophication of channels, ponds, and ocean biological systems and environmental annihilation. Because Ag particles can attach to fish gills and hinder basolateral Na+-K+-ATPase movement, which can suppress osmotic balance in the species, nano silver has a significant impact on marine species. The Daphnia magna 48-hour immobilisation experiment was accompanied to find the toxic capability of nanoscale Ag in aquatic habitats, and the results revealed that the Ag nano-particles must be placed within 'classified intensity 1'. According to the Globally Harmonized System of Classification and Labeling of Chemicals, the introduction of nanoscale Ag into the surroundings should be approached with caution(34).

Despite the fact that these studies generally suggest that nanoscale Ag can pose a risk to humans, it should be noted that the tests on nanoscale Ag poisonousness were carried out in vitro cultures, which are very different from in vivo environments, and at extremely elevated nanoscale Ag particle intersections. As a result, additional studies are desired to assess the poisonousness of nanoscale Ag in vivo until an end to its toxicity can be reached. Some of the toxicity effects of AgNPs on mammals and non-mammals are mentioned in table 2.

Table 2: Toxicity of AgNPs to mammals and non-mammals with concentration, exposure and effects
An Investigation Of Silver Nanoparticles With Its Toxicological Effects And Applications

<table>
<thead>
<tr>
<th>AgNPs size (nm)</th>
<th>Organism</th>
<th>Dose concentration</th>
<th>Exposure method</th>
<th>Effect</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.7 ± 1.0</td>
<td>Female fischer 344 rats</td>
<td>3 x 106 particles cm⁻³</td>
<td>Inhalation exposure: 6h per day 0,1,4,7 days</td>
<td>AgNPs detected in blood, lung, kidney, spleen, liver, and heart; rapid clearance of AgNPs from lung</td>
<td>(35)</td>
</tr>
<tr>
<td>13-15</td>
<td>Sprague-dawley rats</td>
<td>Low-dose (1.73 x 10⁴ particles cm⁻³, 0.5 mg m⁻³), medium dose (1.27 x 10⁵ particles cm⁻³, 3.5 mg m⁻³), high-dose (1.32 x 10⁶ particles cm⁻³, 61 mg m⁻³)</td>
<td>Inhalation exposure: 6h per day, 5 times per week, 4 weeks</td>
<td>No remarkable changes in nasal cavity and lungs, size and number of goblet cells containing neutral mucins increased</td>
<td>(36)</td>
</tr>
<tr>
<td>25</td>
<td>Adult-male C57BL/6N mice</td>
<td>100, 500, 1000 mg kg⁻¹</td>
<td>Intraperitoneal injection for 24 h</td>
<td>Free radical induced oxidative stress, gene expression alteration and neurotoxicity</td>
<td>(37)</td>
</tr>
<tr>
<td>25</td>
<td>Japanese medaka (Oryzias latipes)</td>
<td>100–1000 mg ml⁻¹</td>
<td>70 days</td>
<td>Retarded development, reduced pigmentation and morphological changes</td>
<td>(38)</td>
</tr>
<tr>
<td>3-40</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Cells grown: 10–20 mg L⁻¹, cytotoxicity: 0.1–10 mg L⁻¹</td>
<td>48 hours</td>
<td>Cytotoxicity: membrane integrity showing reduction in viability, higher levels of oxidative stress</td>
<td>(39)</td>
</tr>
</tbody>
</table>

CHARACTERIZATION
Characterization of AgNPs can be performed by employing a variety of different analytical methods:

UV-Visible Spectroscopy
UV-vis spectrometry is a very beneficial and reliable method for determining the vital characteristics of integrated nano-particles, and it is utilised to check the mixture and safety of Ag nano-particles. Ag nano-particles have amazing visual features that cause them to strongly interact with specific light frequencies. Additionally, UV-vis spectrometry is debauched, easy, basic, and sensitive; it is suitable for several types of NPs, requires only a small length of space for estimation, and does not require an alignment for molecular depiction of colloidal mixtures(40).

Dynamic light scattering
The physical and chemical representation of organized nano-particles is an important aspect in the investigation of biological activities using light techniques.(41-43) DLS can evaluate the length allocation of small particles in an array or mixture on a scale ranging from micrometres to one nm. The process of dynamical light dissipation depends on the interaction of light with particles. This method can be used to estimate restricted molecular length conveysances, notably in the 2–500 nm range(41, 42, 44).

Fourier Transform Infrared (FTIR) Spectroscopy
Precision, repeatability, and a good sign-to-commotion ratio can all be achieved with FTIR. It is possible to discover small absorbency modifications on demand, which aids in conducting differentiation spectrophotometry, where one may differentiate the minor absorption groups of essentially dynamic deposition from the massive foundational intake of the entire protein using a spectrophotometric method (45-47). FTIR spectroscopy is frequently utilised to determine if bio-molecules are involved in the merger of nano-particles that are increasingly defined in academic and modern research(48, 49).

Scanning Electron Microscopy
The subject of nanotechnologies has recently provided a major boost to the development of several high-resolution microscopy technologies for studying nanostructures using luminescence blazing electrons to analyse objects at a sophisticated level(50, 51). SEM is a surface screening tool that is fully capable of determining various molecular dimensions, size distributions, nanocrystal forms, and the morphology of mixed particles at the tiny and nanoscales, among other scanning electron approaches. We can examine the architecture of particulates and generate a histogram from the images using SEM by either directly calculating and counting the particles or using specific programming(52).
Transmission Electron Microscopy
The transmission electron microscope (TEM) is a significant, widely employed, and useful technique for portraying nanomaterials. It is utilised to obtain quantifiable quantities of molecules or possibly gain size, length, width, and morphology (53, 54). The percentage of the range between both the targeted focal spot and the example, as well as the range between the target focal spot and its picture plane, regulates the amplifying of TEM. TEM has two advantages over SEM: it can provide a good spatial aim and the ability to perform additional technical calculations. The disadvantages include the requirement for an elevated vacuum and a narrow example segment, as well as the fact that example preparation is time consuming. As a result, test planning is crucial in order to obtain the best possible images (53, 55).

APPLICATIONS

CONCLUSION
Because of their unique features and demonstrated usefulness in a variety of fields, together with medical, catalytic, textile design, biotechnology, nanobiotechnology, biomedical technologies, electrical, optical, and water purification, silver NPs have attracted a lot of attention. This review examines the extensive research on silver nanoparticles to understand better the production methods and mechanisms, characterization of physicochemical characteristics, and potential toxicity, as well as to find potential applications in oncology, personalised medicine, and pharmacology. Biological green production, which employs ecological agents and non-toxic chemicals, stands out as a viable option among a variety of synthesis processes. Plant extracts are the best and most outstanding alternative due to their easy accessibility, benign nature, variety of possibilities, and advantage of faster production. Both Gram +ve and Gram –ve pathogens are susceptible to their bactericidal properties. Because Ag NPs in combination with antibiotics are effective against many drug-resistant microorganisms, they can be employed as a readily available therapy to treat a variety of infections. In the drug delivery system, this has been well explored because it has been used in a variety of medical treatments. Silver nano-particles, on the other hand, have the potential to cause toxicity to varying degrees. Elevated amounts of Ag nano-particles are thought to be harmful and can cause a variety of health concerns. The studies proved that nano-particles of silver could induce various ecological problems and disturb the ecosystem if released into the environment.
environment. As a result, tremendous caution must be exercised in order to properly exploit this marvel in a positive, effective, and efficient manner, while also recognising its limits and ensuring that it does not hurt anyone or the ecosystem. Silver nanoparticles can be great friends if handled appropriately, but they can also be formidable antagonists if employed carelessly. As a result, this assessment concludes with the hope and prayer that procedures will be discovered to eliminate any toxicity induced by nano silver to individuals and the environment, allowing the substance's unique capabilities to be put to excellent use for human benefit without any controversy.

REFERENCES:
An Investigation Of Silver Nanoparticles With Its Toxicological Effects And Applications

40. Tomaszewska E, Soliwoda K, Kadziola K, Tkacz-Szczesna B, Celichowski G,