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Abstract 

The purpose of this study is to develop a fractional epidemiological model for dengue fever in Sudan as 

well as simulate the model by utilizing real data and the Adam-Bashforth and Caputo-Fabrizio operators to 

predict the incidence of dengue fever. The results of our model included stability analysis, reproduction 

numbers, and the existence and uniqueness of remedies. The simulation of the model based on real data 

revealed that the reproduction number is equal to 10, which indicates that Sudan is experiencing an outbreak 

of dengue fever. The government may receive a suggestion based on the modeling of the dengue fever 

prototype for the substantial proportion of dengue cases in Sudan.  

Keywords: A fractional Caputo-Fabrizio; Prediction; simulation; Dengue; Sudan. 

1. INTRODUCTION 

Dengue fever (DF) is caused by a virus spread 

by parasitized Aides Aegyptus mosquitoes. It is 

a tropical and subtropical disease [1]. Yes, this 

is the same response. Pathogens progress to the 

more profound illnesses, dengue hemorrhagic 

fever (DHF) or septicemic (DSS) [2]. Recent 

years have seen an increase in the occurrence 

of DF, making it a public health issue of 

worldwide significance that necessitates the 
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involvement of relevant bodies for every 

International Health Regulation (IHR) 2005. 

As shown by the World Health Organization 

(WHO), two-fifths of the population of the 

earth seems to be under threat from DF sepsis, 

and the ailment remains prevalent in over 100 

countries [3, 4]. Several more influence the 

diffusion and propagation of DF, and novel 

studies indicate that DF lesions are usually 

aligned with interior tendencies, such as water-

storage mechanisms that create a reproductive 

channel for mosquitoes. Mosquitoes are also 

thought to spend the night inside. Malady 

diffusion is aided by urbanization, which 

efficiently delivers albedo owing to unviable 

prevention strategies, climate variability, and a 

rise in commercial airplanes; this has also 

assisted the slight acceleration of viremic 

beings and the international scatter of the 

ailment [5]. The virus has been swirling all 

across Africa ever since the 20th century. Until 

1980, the serogroups' occurrences had 

increased exponentially [6–14]. Dengue virus 

is prevalent throughout Sudan, and its 

proportion has been reduced to the country's 

coastline and subcoastal territories, where the 

illness was first described by Saigh in 1906 and 

Balfour in 1907 on the Red Sea shoreline, in 

Port Sudan downtown [3,4,5,6]. DNF has 

recently swept the country. In fact, the bulk of 

dengue floods in the North African and Middle 

East were reveled in Sudan [6,7]. DNF-2 was 

first realized in patients admitted to hospital of 

an East Sudan in 1984, and it was first 

confirmed in Kassala region during an outbreak 

in 2016–17. Sudan was the initial African place 

to confirm DNF-1 that year [8, 9]. DNF 

pathogens have been noticed in individuals 

from bacterial loads in the east, north, south, 

and focal Sudan varied widely from 7 to 25% 

[5, 6, 3]. These pathogens have been associated 

with febrile disease outbreaks following heavy 

rain and flooding. 

According to entomological scrutiny, the 

dominant mosquito species in the area was 

Aedes aegypti, which is known as the primary 

vector of this virus in urban settings. Later that 

year, refugees in Darfur, Sudan, experienced a 

unique dengue fever outbreak with co-

circulating DNF-2 and 3 [13]. As a result, a 

second DENV-2 outbreak occurred in east 

Sudan between 2016 and 2017 [8]. According 

to studies, Sudan has a high prevalence of DNF 

infections (67%), with the coastal region 

having an even higher prevalence (89%). They 

reiterated that the bulk of In each of these 

regions, persons were diagnosed with multiple 

pathogens, and so all DNF (1-4) serogroups 

were prevalent [13]. DNF-1 and DNF-3 have 

arisen in the Darfur region of western Sudan, 

exacerbating a dengue fever outbreak [14]. The 

key determinants for DENV pathogen in Sudan 

were poverty, an absence of mosquito control, 

sleeping outside, absence of essential civic 

facilities these rather water delivery and water 

supply storage, and geographic placement [9, 

15]. This paper aims to describe the dynamics 

of the dengue epidemic outbreak in Sudan 

using the fractional-order differential operator 

Caputo-Fabrizio (CF) and the fractional Euler 

method. The second goal of this research is to 

assess the effectiveness of these algorithms and 

use the most precise techniques to forecast 

dengue fever outbreaks in Sudan. The purpose 

of this work is just to employ the fractional-

order differential operator Caputo-Fabrizio 

(CF) and the fractional Euler approach to 

explain the dynamics of the dengue epidemic 

outbreak in Sudan. The second purpose of this 

work is to make comparisons of achievement of 

these algorithms and employ the most accurate 

methods to predict dengue fever outbreaks in 

Sudan. 

This research is organized as follows: Section 1 

introduces Dengue fever in Sudan; Section 2 

gives crucial concepts required to understand 



A fractional epidemiological model for prediction and simulation the outbreaks of dengue fever outbreaks in Sudan  

 

2681 

the remainder of the analysis; Section 3 

Formulation of a Fractional Dengue Fever 

Model; Section 4 is devoted to building an 

epidemiological model for dengue disease 

using the Caputo-Fabrizio derivative, as well as 

considering the model's existence and 

uniqueness under the CF operator; section5 

discusses numerical analysis and simulation;  

and Section 6 examines the performance of the 

models under discussion based on computing  

the errors  of the methods, Section 7 result and 

discussion.  And section 8 presents the key 

findings of the current research project. 

2. Preliminaries 

Definition 1 Riemann-Liouville fractional 

integral (RLI) operator of order α>0 for a 

function y(τ) is given by [16]: 

𝐷𝛼𝑦(𝑡) ≔
1

Г(𝑛−𝛼)
∫ (𝑡 − 𝜏)𝑛−𝛼−1𝑦𝑛(𝜏)𝑑𝜏. =
𝑡

0

𝐼𝑛−𝛼𝑦𝑛(𝑡), 𝑡 > 0         (1) 

Definition 2 The fractional integral (FI) of 

order 𝛼 of a function 𝑓 is defined as [17] 

𝐼𝑡
𝛾
𝑦(𝑡) ≔

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑦(𝑡) +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ 𝑦(𝜏)𝑑𝜏. 𝑡 ≥ 0,0 < 𝛼 < 1      
𝑡

0
(2) 

Definition 3 Caputo derivative of order 0 ≤
𝑛 − 1 < 𝛼 < 𝑛 with the lower limit zero for a 

function 𝑦(𝜏) is given by [18]: 

𝐼𝛼𝑦(𝑡) ≔
1

Г(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑦(𝜏)𝑑𝜏.  𝑡 >
𝑡

0

0                                   (3) 

Definition 4 For 𝑦𝜖𝐻1(0, 𝑡), 𝑡 > 0 , 𝑇 >
0, 𝛼𝜖(0,1] Then the CF fractional operator 

[16] is given by 

𝐷𝑡
𝛼

0
𝐶𝐹 𝑦(𝑡) ≔
𝐵(𝛼)

1−𝛼

𝑑

𝑑𝑡
∫ 𝑦(𝜏)𝑒𝑥𝑝 (−𝛼

𝑡−𝜏

1−𝛼
)𝑑𝜏.  0 < 𝛼 <

𝑡

0

1                    (4) 

In this expression 𝐵(𝛼) satisfies the condition 

𝐵(0) = 𝐵(1) = 1. 

Definition 5 The Mittag-Leffler function 

(MLF) is a generalization of the exponential 

function. This function can be expressed as 

follows: 

𝐸𝛼(𝑡) =

∑
𝑡𝑘

Γ(𝛼𝑘+1)

∞
𝑘=0                                                                

(5) 

Definition 6 For 𝑦𝜖𝐻1(0, 𝑡), 𝑡 > 0 , 𝑇 >
0, 𝛼𝜖(0,1] Then the AB fractional operator 

[19] y(t) in the Riemann–Liouville is given by 

𝐷𝑡
𝛼

0
𝐴𝐵 𝑦(𝑡) ≔

𝐵(𝛼)

1−𝛼

𝑑

𝑑𝑡
∫ 𝑦(𝜏)𝐸𝛼 (

𝛼

1−𝛼
(𝑡 −

𝑡

0

𝜏)𝛼) 𝑑𝜏.  0 < 𝛼 < 1.     (6) 

In this expression 𝐵(𝛼) satisfies the condition 

𝐵(0) = 𝐵(1) = 1. 

Definition 7 For y ∈ H1(0, T), T > 0Then the 

AB fractional operator [19] y(t) in the Caputo 

sense is given by 

𝐷𝑡
𝛼

0
𝐴𝐵 𝑦(𝑡) ≔

𝐵(𝛼)

1−𝛼
∫

𝑑𝑦(𝜏)

𝑑𝜏
𝐸𝛼 (

𝛼

1−𝛼
(𝑡 −

𝑡

0

𝜏)𝛼) 𝑑𝜏 .  0 < 𝛼 < 1.               (7) 

In this expression 𝐵(𝛼) satisfies the condition 

𝐵(0) = 𝐵(1) = 1. 

Definition 8: Let 0 < 𝛼 < 1 and the fractional 

CF derivative is expressed as 

𝐷𝑡
𝛼𝑦(𝑡)0

𝐶𝐹 = ℎ(𝑡)                          (8) 

3. Model Formulation: 

A infectivity model of dengue fever in 

mathematical formulation is premised on a 

number of propositions, along with the 

following: The overall total number of persons 

(N_h) and mosquitoes (N_m) is constant, the 

rate of birth and morbidity are equal, births in 

mosquitos and humans for every category enter 

the suspected group, each person in the 

population is inclined to possess the same count 

of mosquito nibbles, and the infected mosquito 

is likely to sting each component of the data 
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provided. Table 1 shows the variables 

incorporated into the dengue fever illness 

framework. The above-mentioned model may 

be consumed in the form of a mathematical 

framework that is a host-vector interaction 

prototype, which is the following Fractional 

Differential approach:    

Table 1 Definition of infectivity model 

components: 

Variable Description 

Nh(t) Overall number of people 

(constant ≈ 44 million) 

𝑆ℎ(𝑡) Susceptible humans 

𝐼ℎ(𝑡) Infected humans 

𝑅ℎ(𝑡) Recovery humans 

𝑆𝑚(𝑡) Susceptible female mosquitoes 

𝐼𝑚(𝑡) Infected female mosquitoes 

  Parameter Description 

𝜇ℎ Human mortality rate for every 

person 

𝜇𝑚 Corresponding value for the 

mosquitoes 

𝛾ℎ Recovery rate of the humans 

𝐵 The biting rate 

𝛽𝑚ℎ The likelihood that human to 

mosquito transfer may occur 

𝛽ℎ𝑚 The likelihood that mosquito 

to human transfer may occur 

{
 
 
 
 
 

 
 
 
 
 

                   
  

𝑑𝑆ℎ

𝑑𝑡
= 𝜇ℎ𝑁ℎ − (𝐵𝛽𝑚ℎ

𝐼ℎ

𝑁ℎ
+ 𝜇ℎ) 𝑆ℎ,                                   

𝑑𝐼ℎ

𝑑𝑡
= 𝐵𝛽𝑚ℎ

𝑆ℎ𝐼ℎ

𝑁ℎ
− (𝛾ℎ + 𝜇ℎ)𝐼ℎ,                                          

𝑑𝑅ℎ

𝑑𝑡
= 𝛾ℎ𝐼ℎ − 𝜇ℎ𝑅ℎ,                                                                    

                                                                           
𝑑𝑆𝑚

𝑑𝑡
= 𝜇𝑚𝑁𝑚 − (𝐵𝛽𝑚ℎ

𝐼ℎ

𝑁ℎ
+ 𝜇𝑚) 𝑆𝑚,                                  
 

𝑑𝐼𝑚

𝑑𝑡
= 𝐵𝛽𝑚ℎ

𝐼ℎ

𝑁ℎ
𝑆𝑚 − 𝜇𝑚𝐼𝑚                                                   
                                               

(9) 

we expand the model (9) by employing the 

newly proposed CF derivatives with variable 

order 𝛼(𝑡).  

4. The CF derivative model: 

In this part we apply the CF derivative to 

model (9). The fractional model is attained by 

replacing the classical derivative by the 

operator 𝐷0
𝐶𝐹𝐶

𝑡
𝛼(𝑡)

:  

4.1 Variable-order of fractional model:                    
  

𝐷0
λ

0
𝐶𝐹 𝑆ℎ = 𝜃1 − (𝜃2 + 𝜃3)𝑆ℎ,                                                

                               
𝐷0
λ

0
𝐶𝐹 𝐼ℎ = 𝜃2𝑆ℎ − (𝜃4 + 𝜃3)𝐼ℎ,                                          

𝐷0
λ

0
𝐶𝐹 𝑅ℎ = 𝜃4𝐼ℎ − 𝜃3𝑅ℎ,                                                         

                                                                           
𝐷0
λ

0
𝐶𝐹 𝑆𝑚 = 𝜃6 − (𝜃2 + 𝜃5)𝑆𝑚,                                              

 
𝐷0
λ

0
𝐶𝐹 𝐼𝑚 = 𝜃2𝑆𝑚 − 𝜃5𝐼𝑚                                                     

                                               

 

(10) 

Where: 

𝜃1 = 𝜇ℎ𝑁ℎ , 𝜃2 = 𝐵𝛽𝑚ℎ
𝐼ℎ

𝑁ℎ
= 𝐵𝛽ℎ𝑚

𝐼ℎ

𝑁ℎ
, , 𝜃3 = 

𝜇ℎ , 𝜃4 = 𝛾ℎ, 𝜃5 = 𝜇𝑚 ,  𝜃6 =
𝜇𝑚𝑁𝑚                                                                                                                           
(11) 

With conditions: 

𝑆ℎ(0) = 𝑐1, 𝐼ℎ(0) = 𝑐2, 𝑅ℎ(0) = 𝑐3, 𝑆𝑚(0) =
𝑐4, 𝐼𝑚(0) = 𝑐5        (12) 

4.2 Existence and uniqueness of Solutions: 

This section examines the existence and 

uniqueness of the fractional model solution 

with exponential law. In natural sciences, it is 

critical to understand the existence and 

uniqueness of any mathematical model's 

solution. As a result, we apply fixed point 

theory to investigate the existence and 

uniqueness of the solution of a fractional model 

[20-22]. We apply the FI operator (2) to Eq. 

(10),(11) and Eq. (12), which gives: 

𝑆ℎ(𝑡) − 𝑆ℎ(0) = 𝐼𝑡
𝛾

0
𝐶𝐹 (𝜃1 − (𝜃2 +

𝜃3)𝑆ℎ)       (13) 
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𝐼ℎ(𝑡) − 𝐼ℎ(0) = 𝐼𝑡
𝛾

0
𝐶𝐹 (𝜃2𝑆ℎ

− (𝜃4 + 𝜃3)𝐼ℎ )      (14) 

𝑅ℎ(𝑡) − 𝑅ℎ(0) = 𝐼𝑡
𝛾

0
𝐶𝐹 (𝜃4𝐼ℎ − 𝜃3𝑅ℎ )      (15) 

𝑆𝑚(𝑡) − 𝑆𝑚(0)

= 𝐼𝑡
𝛾

0
𝐶𝐹 (𝜃6

− (𝜃2 + 𝜃5)𝑆𝑚)   (16) 

𝐼𝑚(𝑡) − 𝐼𝑚(0) = 𝐼𝑡
𝛾

0
𝐶𝐹 (𝜃2𝑆𝑚 − 𝜃5𝐼𝑚)       (17) 

Using the notation suggested in [23], we have 

𝑆ℎ(𝑡) − 𝑆ℎ(0) =
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
(𝜃1 − (𝜃2 + 𝜃3)𝑆ℎ) +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝜃1 −                                           (𝜃2 +
𝑡

0

𝜃3)𝑆ℎ)𝑑𝜏                                                                                     
(18) 

𝐼ℎ(𝑡) − 𝐼ℎ(0) =
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
(𝜃2𝑆ℎ − (𝜃4 +

𝜃3)𝐼ℎ ) +
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝜃2𝑆ℎ −
𝑡

0

                                          (𝜃4 +
𝜃3)𝐼ℎ )𝑑𝜏                                                                                      

(19) 

𝑅ℎ(𝑡) − 𝑅ℎ(0) =
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
(𝜃4𝐼ℎ − 𝜃3𝑅ℎ ) +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝜃4𝐼ℎ −
𝑡

0

                                             𝜃3𝑅ℎ )𝑑𝜏                                                                                                
(20) 

𝑆𝑚(𝑡) − 𝑆𝑚(0) =
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
(𝜃6 − (𝜃2 +

𝜃5)𝑆𝑚) +
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝜃6 −
𝑡

0

                                         (𝜃2 +
𝜃5)𝑆𝑚)𝑑𝜏                                                                                      

(21) 

𝐼𝑚(𝑡) − 𝐼𝑚(0) =
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
(𝜃2𝑆𝑚 − 𝜃5𝐼𝑚)   +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝜃2𝑆𝑚 −
𝑡

0

                                            𝜃5𝐼𝑚) 𝑑𝜏                                                                                                  
(22) 

We express 

𝑓1(𝑡, 𝑆ℎ) = 𝜃1 − (𝜃2 + 𝜃3)𝑆ℎ          (23) 

𝑓2(𝑡, 𝐼ℎ) = 𝜃2𝑆ℎ − (𝜃4 + 𝜃3)𝐼ℎ            (24) 

𝑓3(𝑡, 𝑅ℎ) = 𝜃4𝐼ℎ − 𝜃3𝑅ℎ                                               (25) 

𝑓4(𝑡, 𝑆𝑚) = 𝜃6 − (𝜃2 + 𝜃5)𝑆𝑚                (26) 

𝑓5(𝑡, 𝐼𝑚) = 𝜃2𝑆𝑚 − 𝜃5𝐼𝑚                                               (27) 

Theorem 1 the kernelsf_1,f_2,and f_3 satisfy 

the Lipschitz condition and contraction if 

0 ≤ 𝜃2 + 𝜃3 < 1 

Proof we initiate with f_1. For two functions x 

and x_1, we have 

‖𝑓1(𝑡, 𝑆ℎ) − 𝑓1(𝑡, 𝑆ℎ1)‖

= ‖(𝜃2 + 𝜃3)(𝑠ℎ(𝑡) − 𝑠ℎ1(𝑡))‖ 

≤ (𝜃2 + 𝜃3)‖(𝑠ℎ(𝑡) − 𝑠ℎ1(𝑡))‖ 

≤ 𝑏1‖(𝑠ℎ(𝑡) − 𝑠ℎ1(𝑡))‖                   (28) 

Taking 𝑏1 = 𝜃2 + 𝜃3 where ‖𝑆ℎ(𝑡)‖ ≤

𝑎1, ‖𝐼ℎ(𝑡)‖ ≤ 𝑎2, ‖𝑆𝑚(𝑡)‖ ≤ 𝑎3, ‖𝐼𝑚(𝑡)‖ ≤

𝑎3, ‖𝑠ℎ(𝑡)‖ ≤ 𝑎3 are bounded functions, we 

have 

 

‖𝑓1(𝑡, 𝑆ℎ) − 𝑓1(𝑡, 𝑆ℎ1)‖ ≤ 𝑏1‖𝑠ℎ(𝑡) −

𝑠ℎ1(𝑡)‖                      (29) 

Thus the Lipschitz condition is satisfied for𝑓1. 

Furthermore, if 

0 ≤ 𝜃2 + 𝜃3 < 1, then it is also a contraction. 

Similarly, we can prove that the kernels 𝑓1 , 𝑓2 

, 𝑎𝑛𝑑 𝑓3 satisfy the Lipschitz conditions 

‖𝑓1(𝑡, 𝐼ℎ) − 𝑓1(𝑡, 𝐼ℎ1)‖ ≤ 𝑏2‖𝐼ℎ(𝑡) − 𝐼ℎ1(𝑡)‖                                 

(30) 

 ‖𝑓1(𝑡, 𝑅ℎ) − 𝑓1(𝑡, 𝑅ℎ1)‖ ≤ 𝑏3‖𝑅ℎ(𝑡) −

𝑅ℎ1(𝑡)‖                             (31) 

‖𝑓1(𝑡, 𝑆𝑚) − 𝑓1(𝑡, 𝑆𝑚1)‖ ≤ 𝑏4‖𝑆𝑚(𝑡) −
𝑆𝑚1(𝑡)‖                           (32) 
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‖𝑓1(𝑡, 𝐼𝑚) − 𝑓1(𝑡, 𝐼𝑚1)‖ ≤ 𝑏5‖𝐼𝑚(𝑡) −

𝐼𝑚1(𝑡)‖                             (33) 

using the notations of the earlier stated 

kernels, (18-22) reduces to the system 

𝑆ℎ(𝑡) − 𝑆ℎ(0) =
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑓1(𝑡, 𝑆ℎ) +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝑓1(𝜏, 𝑆ℎ))𝑑𝜏                           
𝑡

0
(34) 

𝑅ℎ(𝑡) − 𝑅ℎ(0) =
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑓1(𝑡, 𝑅ℎ)) +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝑓1(𝜏, 𝑅ℎ))𝑑𝜏                      
𝑡

0
(35) 

𝐼ℎ(𝑡) − 𝐼ℎ(0) =
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑓1(𝑡, 𝐼ℎ) +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝑓1(𝜏, 𝐼ℎ))𝑑𝜏                              
𝑡

0
(36) 

𝑆𝑚(𝑡) − 𝑆ℎ(0) =
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑓1(𝜏, 𝑆𝑚) +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝑓1(𝜏, 𝑆𝑚))𝑑𝜏                       
𝑡

0
(37) 

𝐼𝑚(𝑡) − 𝐼𝑚(0) =
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑓1(𝑡, 𝐼𝑚) +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝑓1(𝜏, 𝐼𝑚))𝑑𝜏                          
𝑡

0
(38) 

Next, we construct the following recursive 

formulas: 

 

𝑆ℎ𝑛(𝑡) =
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑓1(𝑡, 𝑠ℎ(𝑛−1)) +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝑓1(𝑡, 𝐼ℎ(𝑛−1))) 𝑑𝜏                      
𝑡

0
(39

) 

𝑅ℎ𝑛(𝑡) =
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑓1(𝑡, 𝑅ℎ(𝑛−1)) +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝑓1(𝑡, 𝑅ℎ(𝑛−1))) 𝑑𝜏                 
𝑡

0
(40) 

𝐼ℎ(𝑡) =
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑓1(𝑡, 𝐼ℎ(𝑛−1)) +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝑓1(𝑡, 𝐼ℎ(𝑛−1))) 𝑑𝜏                      
𝑡

0
(41

) 

𝑆𝑚𝑛(𝑡)−=
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑓1(𝑡, 𝑆𝑚(𝑛−1)) +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝑓1(𝑡, 𝑆𝑚(𝑛−1))) 𝑑𝜏             
𝑡

0
(42) 

𝐼𝑚𝑛(𝑡)−=
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑓1(𝑡, 𝐼𝑚(𝑛−1)) +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝑓1(𝑡, 𝐼𝑚(𝑛−1))) 𝑑𝜏              
𝑡

0
(43) 

With the initial conditions: 

              𝑆ℎ0 = 𝑆ℎ(0), 𝐼ℎ0 = 𝐼ℎ(0), 𝑅0 =

𝑅ℎ(0), 𝑆𝑚0 = 𝑆𝑚(0), 𝐼𝑚0 = 𝐼𝑚(0)         (44)     

We express the difference between the 

succession terms as 

 

 

𝑔1𝑛(𝑡) = 𝑆ℎ𝑛(𝑡) − 𝑆ℎ(𝑛−1)(𝑡) =

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
  (𝑓1(𝑡, 𝑠ℎ(𝑛−1)) − 𝑓1(𝑡, 𝑠ℎ(𝑛−2))) +

             
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝑓1(𝑡, 𝑠ℎ(𝑛−1)) −
𝑡

0

𝑓1(𝑡, 𝑠ℎ(𝑛−2))) 𝑑𝜏                                                         

(45) 

𝑔2𝑛(𝑡) = 𝐼ℎ𝑛(𝑡) − 𝐼ℎ(𝑛−1)(𝑡) =

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
  (𝑓1(𝑡, 𝐼ℎ(𝑛−1)) − 𝑓1(𝑡, 𝐼ℎ(𝑛−2))) +

              
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝑓1(𝑡, 𝐼ℎ(𝑛−1)) −
𝑡

0
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𝑓1(𝑡, 𝐼ℎ(𝑛−2))) 𝑑𝜏                                                              

(45) 

𝑔3𝑛(𝑡) = 𝑅ℎ𝑛(𝑡) − 𝑅ℎ(𝑛−1)(𝑡) =

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
  (𝑓1(𝑡, 𝑅ℎ(𝑛−1)) − 𝑓1(𝑡, 𝑅ℎ(𝑛−2))) +

              
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝑓1(𝑡, 𝑅ℎ(𝑛−1)) −
𝑡

0

𝑓1(𝑡, 𝑅ℎ(𝑛−2))) 𝑑𝜏                                                           

(46) 

𝑔4𝑛(𝑡) = 𝑆𝑚𝑛(𝑡) − 𝑆𝑚(𝑛−1)(𝑡) =

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
  (𝑓1(𝑡, 𝑆𝑚(𝑛−1)) − 𝑓1(𝑡, 𝑆𝑚(𝑛−2))) +

              
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝑓1(𝑡, 𝑆𝑚(𝑛−1)) −
𝑡

0

𝑓1(𝑡, 𝑆𝑚(𝑛−2))) 𝑑𝜏                                                         

(46) 

𝑔5𝑛(𝑡) = 𝐼𝑚𝑛(𝑡) − 𝐼𝑚(𝑛−1)(𝑡) =

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
  (𝑓1(𝑡, 𝐼𝑚(𝑛−1)) − 𝑓1(𝑡, 𝐼𝑚(𝑛−2))) +

              
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝑓1(𝑡, 𝐼𝑚(𝑛−1)) −
𝑡

0

𝑓1(𝑡, 𝐼𝑚(𝑛−2))) 𝑑𝜏                                                            

(47) 

It is worth observing that 

𝑆ℎ𝑛(𝑡) = ∑ 𝑔1𝑖(𝑡)
𝑛
𝑖=0 , 𝐼ℎ𝑛(𝑡) =

∑ 𝑔2𝑖(𝑡) ,
𝑛
𝑖=0 𝑅ℎ𝑛(𝑡) = ∑ 𝑔3𝑖(𝑡)

𝑛
𝑖=0  , 𝑆𝑚𝑛(𝑡) =

∑ 𝑔1𝑖(𝑡)
𝑛
𝑖=0 , 𝐼𝑚𝑛(𝑡) =

∑ 𝑔2𝑖(𝑡) ,
𝑛
𝑖=0                                                                                     

(48) 

Now we easily obtain the following result: 

‖𝑔1𝑛(𝑡)‖ = ‖𝑠ℎ𝑛(𝑡) − 𝑆ℎ(𝑛−1)(𝑡)‖ =

‖
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
  (𝑓1(𝑡, 𝑠ℎ(𝑛−1)) −

𝑓1(𝑡, 𝑠ℎ(𝑛−2))) +

             
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝑓1(𝑡, 𝑠ℎ(𝑛−1)) −
𝑡

0

𝑓1(𝑡, 𝑠ℎ(𝑛−2))) 𝑑𝜏 ‖                                                         

(49) 

Applying the triangle inequality to Eq. (49), 

we get 

 

‖𝑠ℎ𝑛(𝑡) − 𝑆ℎ(𝑛−1)(𝑡)‖ ≤

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
‖𝑓1(𝑡, 𝑠ℎ(𝑛−1)) − 𝑓1(𝑡, 𝑠ℎ(𝑛−2))‖ +

                                                   ‖  
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝑓1(𝑡, 𝑠ℎ(𝑛−1)) −
𝑡

0

𝑓1(𝑡, 𝑠ℎ(𝑛−2))) 𝑑𝜏   ‖      (49) 

It is already proved that the kernels satisfy the 

Lipschitz condition, so Eq. (49) gives 

‖𝑠ℎ𝑛(𝑡) − 𝑆ℎ(𝑛−1)(𝑡)‖ ≤
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
‖𝑠ℎ𝑛 −

𝑠ℎ(𝑛−1)‖ + 
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ ‖𝑠ℎ𝑛 −
𝑡

0

                                                      𝑠ℎ(𝑛−1)‖𝑑𝜏                                                                                 

(50) 

we get , 

 

‖𝑔1𝑛(𝑡)‖ ≤
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏1‖𝑔1𝑛(𝑡)‖ +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏1 ∫  

𝑡

0
‖𝑔1(𝑛−1)(𝜏)‖𝑑𝜏                 (51) 

Using the same process, we derive the 

following results 
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‖𝑔2𝑛(𝑡)‖ ≤
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏2‖𝑔2𝑛(𝑡)‖ +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏2 ∫  

𝑡

0
‖𝑔2(𝑛−1)(𝜏)‖𝑑𝜏                 (52) 

‖𝑔3𝑛(𝑡)‖ ≤
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏3‖𝑔3𝑛(𝑡)‖ +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏3 ∫  

𝑡

0
‖𝑔3(𝑛−1)(𝜏)‖𝑑𝜏                 (53) 

‖𝑔4𝑛(𝑡)‖ ≤
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏4‖𝑔4𝑛(𝑡)‖ +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏4 ∫  

𝑡

0
‖𝑔4(𝑛−1)(𝜏)‖𝑑𝜏                 (54) 

       ‖𝑔5𝑛(𝑡)‖ ≤
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏5‖𝑔4𝑛(𝑡)‖ +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏5 ∫  

𝑡

0
‖𝑔4(𝑛−1)(𝜏)‖𝑑𝜏              (55) 

Taking (51-55) into account, we obtain the 

existence of the solution of the considered 

model. 

Theorem 2 The Fractional Dengue Fever 

model involving the CF fractional operator 

expressed in Eqs. (10) (11) and Eq. (12),  has a 

solution if there exists 𝑡0 such that 

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏1 +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏1𝑡0 <

1                                        (56) 

Proof  As we know, the functions 

𝑥(𝑡), 𝑦(𝑡), 𝑎𝑛𝑑 𝑧(𝑡) are bounded. Using the 

results presented in Eqs. (51-55) and utilizing 

the recursive algorithm, we get 

 

‖𝑔1𝑛(𝑡)‖ ≤ ‖𝑆ℎ𝑛(𝑡)‖ [
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏1 +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏1𝑡0]

𝑛

                          (57) 

‖𝑔2𝑛(𝑡)‖ ≤ ‖𝐼ℎ𝑛(𝑡)‖ [
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏2 +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏2𝑡0]

𝑛

                          (58) 

‖𝑔3𝑛(𝑡)‖ ≤ ‖𝑅ℎ𝑛(𝑡)‖ [
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏3 +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏3𝑡0]

𝑛

                         (59) 

‖𝑔4𝑛(𝑡)‖ ≤ ‖𝑆𝑚𝑛(𝑡)‖ [
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏4 +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏4𝑡0]

𝑛

                        (60) 

‖𝑔5𝑛(𝑡)‖ ≤ ‖𝐼𝑚𝑛(𝑡)‖ [
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏5 +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏5𝑡0]

𝑛

                        (61) 

Hence the solution of the considered model 

exists and is continuous. Now, to show that 

Eq. (50) is a solution of the model Eqs. (10) 

(11) and (12) we take 

𝑆ℎ(𝑡) − 𝑆ℎ(0) = 𝑆ℎ𝑛(𝑡) −

𝐴𝑛(𝑡)                                         (62) 

𝐼ℎ(𝑡) − 𝑥(0) = 𝐼ℎ𝑛(𝑡) −

𝐵𝑛(𝑡)                                            (63) 

𝑅ℎ(𝑡) − 𝐼ℎ(0) = 𝑅ℎ𝑛(𝑡) −

𝐶𝑛(𝑡)                                        (64) 

𝑆𝑚(𝑡) − 𝑆𝑚(0) = 𝑆𝑚𝑛(𝑡) −

𝐷𝑛(𝑡)                                     (65) 

𝐼𝑚(𝑡) − 𝐼𝑚(0) = 𝐼𝑚𝑛(𝑡) −

𝐸𝑛(𝑡)                                      (66) 

Thus we have 
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‖𝐴𝑛(𝑡)‖ = ‖
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
(𝑓1(𝑡, 𝑆ℎ) −

𝑓1(𝑡, 𝑆ℎ(𝑛−1))) +
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫  
𝑡

0
(𝑓1(𝜏, 𝑆ℎ) −

                     𝑓1(𝜏, 𝑆ℎ(𝑛−1))) 𝑑𝜏‖    

          ≤  
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
‖𝑓1(𝑡, 𝑆ℎ) −

𝑓1(𝑡, 𝑆ℎ(𝑛−1))‖ +
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫  
𝑡

0
‖𝑓1(𝑡, 𝑆ℎ) −

                        𝑓1(𝑡, 𝑆ℎ(𝑛−1))‖𝑑𝜏        

         ≤
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏1‖𝑆ℎ − 𝑆ℎ(𝑛−1)‖ +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏1‖𝑆ℎ − 𝑆ℎ(𝑛−1)‖𝑡                         (67) 

Using this process recursively [], we get 

‖𝐴𝑛(𝑡)‖ ≤ (
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
+

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑡)
𝑛+1

𝑏1
𝑛+1𝑎1                                                              

(68) 

Then at 𝑡0, we have 

‖𝐴𝑛(𝑡)‖ ≤ (
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
+

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑡0)

𝑛+1

𝑏1
𝑛+1𝑎1                                         

(69) 

Taking the limit on Eq. (69) as n tends to 

infinity gives 

                                   ‖𝐴𝑛(𝑡)‖ → 0 Similarly, 

we get ‖𝐵𝑛(𝑡)‖ → 0 , ‖𝐶𝑛(𝑡)‖ → 0  

The existence theorem's proof is now 

complete. 

Next, we prove the uniqueness of a solution of 

the fractional model Eqs. (10) (11) and (12). 

Let's suppose that there is another system of 

solutions of the fractional model the fractional 

model  

𝑆ℎ
∗(𝑡), 𝐼ℎ

∗(𝑡), 𝑅ℎ
∗(𝑡), 𝑆𝑚

∗(𝑡)𝑎𝑛𝑑 𝐼𝑚
∗(𝑡) Then 

𝑆ℎ(𝑡) − 𝑆ℎ
∗(𝑡) =

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
(𝑓1(𝑡, 𝑆ℎ) −

𝑓1(𝑡, 𝑆ℎ
∗)) +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ (𝑓1(𝜏, 𝑆ℎ) −
𝑡

0

                                           𝑓1(𝜏, 𝑆ℎ
∗))𝑑𝜏                                                                                              

(70) 

Taking the norms gives 

‖𝑆ℎ(𝑡) − 𝑆ℎ
∗(𝑡)‖ ≤

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
‖𝑓1(𝑡, 𝑆ℎ) −

𝑓1(𝑡, 𝑆ℎ
∗)‖      +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ ‖𝑓1(𝑡, 𝑆ℎ) −
𝑡

0

                                              𝑓1(𝑡, 𝑆ℎ
∗)‖𝑑𝜏                                                                                            

(71) 

Employing the results presented in (29-33), 

(4.6) we get 

‖𝑆ℎ(𝑡) − 𝑆ℎ
∗(𝑡)‖ ≤

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
‖𝑆ℎ(𝑡) −

𝑆ℎ
∗(𝑡)‖       +

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
∫ ‖𝑆ℎ(𝑡) −
𝑡

0

                                               𝑆ℎ
∗(𝑡)‖𝑑𝜏                                                                                                

(72) 

which gives 

‖𝑆ℎ(𝑡) − 𝑆ℎ
∗(𝑡)‖ (1 −

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏1 −

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝑏1𝑡) ≤ 0                                  (73) 

Theorem 3 The Fractional Dengue Fever 

model Eqs. (10) (11) and (12) 

 has a unique solution if 
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1 −
2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝛾1 −

2(1−𝛾)

(2−𝛾)𝑀(𝛾)
𝛾1𝑡 >

0                                            (74) 

Proof from Eq. (73) and properties of a norm 

in Eq. (74) gives: 

‖𝑆ℎ(𝑡) − 𝑆ℎ
∗(𝑡)‖ = 0                                                      

(75) 

Thus we can see that  𝑆ℎ(𝑡) = 𝑆ℎ
∗(𝑡) . 

Using a similar procedure, we easily prove 

that 

𝑆ℎ(𝑡) = 𝑆ℎ
∗(𝑡), 𝐼ℎ(𝑡) = 𝐼ℎ

∗(𝑡), 𝑅ℎ(𝑡) =

𝑅ℎ
∗(𝑡), 𝑆𝑚(𝑡) = 𝑆𝑚

∗(𝑡), 𝐼𝑚(𝑡) = 𝐼𝑚
∗(𝑡)(76) 

The Fractional Dengue Fever model Eqs. (10) 

(11) and (12) has a unique solution. 

5. The Basic Reproduction Number: 

In this part we expected value of the secondary 

infections rate per time unit is denoted by R_0, 

and the basic reproduction number is a baseline 

metric in epidemiology. Based on the 

Fractional Model of equation (10), We have 

two infected classes 𝐼ℎ(𝑡), 𝐼𝑚(𝑡). 

𝐷0
λ

0
𝐶𝐹 𝐼ℎ = 𝜃2𝑆ℎ − (𝜃4 + 𝜃3)𝐼ℎ     (77a) 

𝐷0
λ

0
𝐶𝐹 𝐼𝑚 = 𝜃2𝑆𝑚 − 𝜃5𝐼𝑚           (77b) 

We assume that the Hazard rate of infection is 

a constant 𝛽(𝑡)  taking the maximum value 

𝛽(0) = 𝛽0  and the minimum value 𝛽(𝑡∗) =
𝛽∗. 

 Let 𝑥 = (𝐼ℎ, 𝐼𝑚) .and rewrite the system of 

equation (77) for the susceptible and infected 

classes in the general from 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥) − 𝑣(𝑥)         (78) 

Where 

𝑓(𝑥) = [
𝐵𝛽𝑚ℎ

𝑆ℎ𝐼ℎ

𝑁ℎ

𝐵𝛽𝑚ℎ
𝐼ℎ𝑆𝑚
𝑁ℎ

], 𝑣(𝑥) =

[
𝛽𝑚ℎ

𝑆ℎ

𝑁ℎ
0

𝛽𝑚ℎ
𝑆𝑚

𝑁ℎ
0
]          (79) 

 

Now the Jacobian of 𝑓(𝑥) and 𝑣(𝑥) of the 

disease free equilibrium point is 

𝐹 = [
𝐵𝛽𝑚ℎ

𝑆ℎ

𝑁ℎ
0

𝐵𝛽𝑚ℎ
𝑆𝑚

𝑁ℎ
0
]                                                      

(80) 

 

𝑉 = [
(𝛾ℎ + 𝜇ℎ)𝐼ℎ 0

0 𝜇𝑚
]         (81) 

Therefore 

𝑉−1 = [

1

(𝛾ℎ+𝜇ℎ)𝐼ℎ
0

0
1

𝜇𝑚

]         (82) 

By use Eq. (11) we have  

𝑅0 = 𝜌(𝐹𝑉
−1) = 

1

𝜇𝑚
        (83) 

6. Stability analysis of the model: 

Theorem 3 The Fractional Model of equation 

(10) is locally stable related to the free 

equilibrium point E_1 if R_0>1, and unstable if 

R_0<1. 

Proof: The Jacobian matrix [24] with respect to 

the Fractional Model of equation (10) is given 

by: 
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𝑱 =

[
 
 
 
 
 
 
 −𝐵𝛽𝑚ℎ

𝐼ℎ

𝑁ℎ
− 𝜇ℎ −𝐵𝛽𝑚ℎ

𝑆ℎ

𝑁ℎ
0 0 0

𝐵𝛽𝑚ℎ
𝐼𝑚

𝑁ℎ
−(𝛾ℎ + 𝜇ℎ) 0 0 𝐵𝛽𝑚ℎ

𝑆ℎ

𝑁ℎ

0 𝛾ℎ −𝜇ℎ 0 0

0 −𝐵𝛽𝑚ℎ
𝑆𝑚

𝑁ℎ
0 −𝜇𝑚 − 𝐵𝛽ℎ𝑚

𝐼ℎ

𝑁ℎ
0

0 𝐵𝛽𝑚ℎ
𝑆𝑚

𝑁ℎ
0 𝐵𝛽ℎ𝑚

𝐼ℎ

𝑁ℎ
−𝜇𝑚 ]

 
 
 
 
 
 
 

     

 (84) 

At, 𝐸1 the Jacobin matrix becomes 

𝑱(𝐸1) =

[
 
 
 
 
−𝜇ℎ −𝐵𝛽𝑚ℎ 0 0 0

0 −(𝛾ℎ + 𝜇ℎ) 0 0 𝐵𝛽𝑚ℎ
0 𝛾ℎ −𝜇ℎ 0 0
0 −𝐵𝛽𝑚ℎ 0 −𝜇𝑚 0
0 𝐵𝛽ℎ𝑚 0 0 −𝜇𝑚 ]

 
 
 
 

                             

(85) 

Thus, we get the eigenvalues are 

𝜎1 = −𝜇ℎ, 𝜎2 = −𝜇ℎ, 𝜎3 = −𝜇𝑚, 𝜎4 =
−(𝛾ℎ+𝜇ℎ+𝜇𝑚)

2
− 𝑘, 𝜎5 = 𝑘 −

(𝛾ℎ+𝜇ℎ+𝜇𝑚)

2
       (86) 

Where 

𝑘 =
1

2
√(4𝜇𝑚𝛽𝑚ℎ𝛽ℎ𝑚𝐵2)/𝑁ℎ + 𝛾ℎ2 + 2𝛾ℎ𝜇ℎ − 2𝛾ℎ𝜇𝑚 + 𝜇ℎ2 − 2𝜇ℎ𝜇𝑚 + 𝜇𝑚2 (87) 

If 2𝑘 < 𝛾ℎ + 𝜇ℎ + 𝜇𝑚 , 𝜎5 < 0 and 𝑅0 < 1 , 

then the Fractional Model is Stable for, 𝑅0 <
1, Hence the Fractional Model of equation 

(10) is unstable for 𝑅0 > 1. 

7. Numerical scheme and simulations: 

In this section, simulation of the Fractional 

infectivity model of dengue fever in Sudan 

obtained using MATLAB programs to show 

the dynamics of an epidemic and to study 

different strategies. In general, two approaches 

to controlling the pandemic can be considered. 

The first based on the number of mosquitos, 

while the second based on the total of 

susceptible people. the initial values of the 

model are: 

𝑆ℎ(0) = 3326, 𝐼ℎ(0) = 482, 𝑅ℎ(0)

= 0, 𝑆𝑚(0) = 117600, 𝐼𝑚(0)

= 5600 

used in the simulation are based on the 

information on dengue fever in Sudan that is 

displayed in Table 2. The basic reproduction 

number R_0  is obtained from equation (83). 

 

Table 2 Rest of epidemiological parameters 

of the proposed model 

Parameter Range of values References 

𝑁ℎ 44909351 Constant 

𝑁𝑚 168000 Estimated 

𝜇ℎ 0.0000031 Estimated 

𝜇𝑚 0.1 [16] 

𝛾ℎ 2-10 days – 

[1/3] 

[16] 

𝐵 0.7 [16] 

𝛽𝑚ℎ 0.36 [16] 

𝛽ℎ𝑚 0.36 [16] 

The approximate solution of the fractional 

model obtains by using two-step fractional 

Adam-Bashforth approach for the CF 

derivatives. 
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Figure 1 Simulations for (Susceptible, 

Infected, Recovered) for human beings. 

 

Figure 2 Simulations of dengue fever for 

Susceptible mosquitoes, Infected 

mosquitoes. 

 

 

 

 

 

 

Fig. 3. compare between CF sense and α=0.5. 

 

a 

 

b 

 

c 
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8. Result and discussion 

The Eigenvalues determine the stability 

analysis of the obtained equilibrium values. 

Eigenvalues of the infectivity model of dengue 

disease are determined based on equations (36). 

Based on the prevalence of dengue fever in 

Sudan, the basic reproduction number〖 R〗

_0=10>1,indicates that one sick person can 

spread the disease to up to 10 more people. In 

other words, dengue fever is endemic among 

Sudanese people. The dynamics of dengue 

fever for (Susceptible, Infected, Recovered) for 

human beings and (Susceptible, Infected) for 

mosquitoes are depicted in Figs. 1 and Figs. 2. 

The Fig. 3. display the compare between CF 

sense and α=0.5. 

9. Conclusion 

In this study, we used the Adam-Bashforth 

technique and CF derivatives to get an 

approximation solution to the fractional order 

dengue fever model. 

For the simulations of classical and fractional-

order models with the CF operator, real 

statistical data regarding the dengue fever 

outbreak in Sudan (2022) was used. At 

fractional order α=0.5, we compared the 

classical and CF senses. The fundamental 

reproduction number, which is based on the 

prevalence of dengue fever in Sudan, implies 

that one infected person can spread the disease 

to up to 10 additional persons. To put it another 

way, dengue fever is extremely common 

among Sudanese people. 
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