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Abstract 

Calculations have been made for elastic and inelastic differential cross sections of neutron scattering on 

nuclei near stability (N≥Z) such as 40Ca at energies 12,14,17 and 20MeV, at angles distributed between 

20o and 180o. In this study, we applied Distorted Wave Eikonal Approximation for 40Ca nuclei using 

optical model of wood Saxon potential in two frames: center of mass and laboratory. Comparisons between 

the cross section estimated in the current work and the empirical data available demonstrate good 

approximation.  
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1. INTRODUCTION 

A few isotopes are referred to as "magic" in 

nuclear physics due to the fact that they have 

just the proper number of neutrons or protons 

for forming a complete shell. 2, 8, 20, 28, and 

50 are the first few magic numbers. The most 

prevalent form of calcium, calcium-40, is 

referred to as "doubly magic" due to its nucleus 

contains both 20 neutrons and 20 protons. This 

isotope is particularly stable. Different shapes 

of the nucleus might have extremely 

comparable energies in magic nuclei, allowing 

for coexistence. This illustrates the 

simultaneous quantum superposition of several 

neutrons and protons conformations. The 

process by which a nucleus in the "super 

deformed" conformation, which resembles a 

long rugby ball, into the lowest-energy 

spherical shape is still mostly unknown [1]. 

Present the microscopic study of the elastic and 

inelastic neutron scattering data utilizing 

calcium isotope (40Ca) over energies 

(12,14,17,20 MeV). This paper describes the 

analysis of the optical model of this target. For 

input parameters, the parameter input reference 

(RIPL-3 library) has been used. This data was 

used in both imaginary and real parts of 

potential visual model, with particular 

emphasis, in this study, on the theoretical 

dependence regarding the optical model's 

capabilities. 

For electron-atom scattering in intermediate 

energy range, Joachain, Chen, and Watson [2] 

initially proposed eikonal distorted wave Born 

approximation (DWBA). The fundamental 

component of this approach is a factor of 

correction that is applied to the Born 

approximation's total wave function. Similar to 
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how multistate impact parameter approach 

handles it, this factor permits distortion of 

outgoing as well as incoming wave functions. 

Yet, multi-state impact parameter technique 

only produces total cross sections, whereas the 

Eikonal DWBA gives differential cross 

sections [3]. Even though various intriguing 

aspects of such nuclei were inferred in these 

studies, the examination of momentum 

distributions, reaction cross sections, and 

elastic scattering only offers a highly limited 

access to information on interior structure of 

such nuclei [4]. Studying inelastic excitation 

cross sections can be considered as a logical 

next step in the quest to learn more about nuclei 

outside of the stability line. In actuality, 

photonuclear and electron scattering 

investigations are complemented by Coulomb 

and nuclear excitations in the nucleus-nucleus 

scattering, which can be considered as well-

established instruments for stable nuclei 

spectroscopy [5]. With the use of Eikonal 

approximation, the neutron differential cross-

sections of the elastic scattering were 

computed, and results have been compared to 

the experimental information received from 

EXFOR library. In addition to calculating 

differential cross sections for inelastic 

scattering, these outcomes were contrasted at 

various energies. 

2. Eikonal approximation 

The DWBA amplitude of transition for reaction 

A(a, b)B includes matrix element of following 

form: 

)1()(,)(,)( 33)(

int

)(

  rdrdrAarUBbrTDWBA

+−
= 

 Uint(r) represents interaction potential, and Ψ α 

(Ψ β) represents scattering wave function in a 

channel of the entrance (or the exit), α = a+A (β 

= b+B). ha, A| and hb, B| represent initial and 

final intrinsic system wave functions. Utilizing 

eikonal approximations for the wave functions 

we can have [6]: 

Ψ (−)∗(r)Ψ (+)(r) ≈ exp{iq.r + i χ(b) } (2) 

χ(b) represents eikonal phase which has been 

expressed as: 

χ(b) = 

)3( Uopt(r)dz
1

-






−
v

  

 eikonal approximation validity conditions 

include: (a) forward scattering, in other words, 

θ ≪ 1 radian, (b) small energy is transferred 

from the bombarding energy to projectile, or 

target’s internal freedom degrees. Those two 

conditions perfectly apply to the direct 

processes in the nuclear scattering at Elab ≥ 

50MeV for each one of the nucleons. 

In the equation that has been presented above, 

Uopt(r) represents optical potential, with 

22 z + b ==r , where b may be interpreted as 

parameter of impact. For Coulomb part of the 

optical potential such integral will diverge. One 

solves that with the use of the equation χ = χC + 

χN [7] where χN has been given by the eq. above 

with no Coulomb potential and writing 

Coulomb eikonal phase, χC in the following 

form: 

χC(b) = 2 η ln(kb) (4) 

η = Z1Z2e
2/ħv, Z1 & Z2 represent projectile and 

target charges, v represents the relative 

velocity, k represents their wave-number in 

mass system center. Eq4 re-produces the 

precise amplitude of the Coulomb scattering in 

the case where it is utilized in calculating 

elastic scattering with eikonal approximations 

[8]  
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where φ0 = argΓ(1+iη/2).  

3. The optical potential. 

 Optical potential that has been utilized in the 

calculation processes is described as Woods–

Saxon potential as: 

Uopt = -V 0f (r,Rr,ar) – iW 0f (r,Ri,ai) (6) 

f (r,R, a) = 1/{1 + exp[(r - R)/a]}-1.  

Parameters that enter those potentials have 

been fitted for reproduction of data of elastic 

scattering [8]. 

 The radii of the colliding system are: 

)7()(
3/13/1

0)( tpir AArR +=  

where V0, W0, Rr(i)and ar(i) are real and 

imaginary part of 

optical potential, 

real and imaginary 

radii parameters in fm, and real and the 

imaginary parameters of diffuseness in fermi. 

AP & At are projectile number and target mass 

number. 

4. Elastic scattering 

In the cases of the nucleus-nucleus collision, 

the elastic scattering represents a well-known 

method for examining ground state density 

values. which has been found to be due to the 

fact that by folding nucleon-nucleon 

interactions with nuclear densities of 2 

colliding nuclei, optical potential could be 

connected to ground state density values. 

However, as we saw in previous section, such 

relation isn’t simple [9,10]. It is dependent 

upon the efficient interactions that had been 

employed, how polarization effects are 

handled, and other factors (for a review see, 

[11]. If multiple nucleon-nucleon scattering 

effects could be ignored, a direct link between 

the optical potential and nuclear densities is 

conceivable at greater bombarding energy 

values (ELab ≥  50MeV per nucleon) [12]. 

Particularly for radioactive beams with low 

excitation energies, the results of the real or the 

imaginary nuclear excitations must be 

considered. 

The calculations of the amplitudes of elastic 

scattering utilizing the eikonal wave functions, 

Eq2, is quite simple. They can be expressed as 

[13] 




−=
0

0 )8()]}(exp[1){()( biqbdbbJikfel   

here, q = 2ksin(θ/2), and θ represents angle of 

scattering. Cross section of the elastic 

scattering can be given as: 

           (9) 

For the numerical purposes, it would be more 

convenient to take advantage of analytical 

formula for Coulomb scattering amplitude. 

Which is why, in the case where one would add 

and subtract Coulomb amplitude, fC(θ) in Eq8, 

the result will be as follows: 

 

 (10) 

Here, b has been replaced in χN(b) by b, which 

has been represented by Eq9 in order to form 
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nuclear recoil, as it has been discussed in 

Section1 end. 

The benefit in the use of that equation is that 

term (1 - exp[iχN(b)]) will be equal to 0 for the 

impact parameters which are larger than 

summation of nuclear radii (i.e. the grazing 

impact parameter). Which is why, integral must 

only be carried out within small range. In this 

equation, χC has been represented by Eq4 and 

fC(θ) has been represented by Eq5, with 

 
(11) 

and C = 0.57721560... represents Euler’s 

constant value.  

Eqs. (9-11) describes A(projectile) + B’s elastic 

scattering cross section in mass system’s 

center. In the lab, angle of scattering can be 

expressed as [14]  

 θL = arctan{ sinθ /γ [cosθ +pg(p, E1)]}  

, p = MA/MB  

E1 = E lab[MeV/nucleon]/ mNc2, where mN is 

the nucleon mass, and 

 

 (12) 

γ represent relativistic Lorentz factor of 

motions regarding center of mass systems in 

terms of lab.  

Lab cross section can be represented as: 

 

 
(13) 

 

5. Angular distribution of the particles 

scattered inelastically 

 Angular distribution of particles that are 

scattered inelastically may be determined by: 

  

 (14) 

where we simplified the notation: aµ ≡ aInMn,
M 

1, with µ = Mn - M1. 

The mean value over initial spin and the 

summation over final spin are used to calculate 

inelastic scattering cross section: 

                        (15) 

Equation (15) has been used by the DWEIKO 

program to determine angular distribution in 

the inelastic scattering. However, it would be 

useful to see the way that it connects to a typical 

semi-classical approximation. 

6. Results  

Optical model potentials (OMP), which are 

employed by default, were obtained from 

Koning [15]. Although the low energy 

boundary of validity might vary from nucleus 

to nucleus (for the total Cross section), such 

phenomenological OMPs for neutrons are 

theoretically valid spanning the (12–20 MeV) 

energy range. For the 40Ca target, Table 1 

shows the results of solving the Schrodinger 

equation using this OMP: the shape-elastic 

cross section, total cross section, wave 

functions for direct reaction cross, shape-elastic 

angular distribution, and optical modal. 

Nuclear several radial distances (r), along with 

imaginary and real potential strength values 

Wo and Vo have been found effective for the 

global potential parameters [9], yet in this 
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computation, they were diverted and a and r 

were maintained fixed as in Table1. 

Table1. optical potential Parameters utilized in the calculation of the angular distribution 

from Koning [9]. 

Ein 

MeV 

Vv 

MeV 

rv 

fm 

av 

fm 

Wv 

MeV 

rwv 

fm 

awv 

fm 

W s 

MeV 

rws 

fm 

a s 

fm 

V so 

MeV 

rso 

fm 

aso 

fm 

12 49.6 1.21  0.68  1.1 1.21  0.68 6.7  1.29  0.54 5.5 1.01 0.60 

14 48.9 1.21  0.68  1.3 1.21  0.68 6.7  1.29  0.54 5.5 1.01 0.60 

17 47.8  1.21  0.68  1.6 1.21  0.68 6.5  1.29  0.54 5.4 1.01 0.60 

20 46.7 1.21  0.68  1.9 1.21  0.68 6.4  1.29  0.54 5.4 1.01 0.60 

The main results of the excited nuclei are < r2> 

= 11.948 with root mean square< r2 >1/2 = 

3.457for energies 10,12,14,17 and 20 MeV, 

respectively[15,16]. Gamma or Lorentz factor 

(1.013.1.015, 1.018, 1.021) wavenumber 

(k)=0.741, 0.801, 0.883, 0.959 and Somerfield 

parameter for all energies is zero due to the fact 

that the charge of neutron is zero. Total nuclear 

reactions cross section = -7589.40, -5738.37, - 

3710.27, -2624.02 mb for 12,14,17 and 20 

MeV, respectively. The excitation cross-

sections for nucleus from state to state are 

tabulated in Table 2. 

Table (2) Excitation cross section in unite of (mb) for incident neutrons with energies12,14, 

17 and 20MeV 

Energy 12MeV 14MeV 17MeV 20MeV 

State 2 0.357E+04 0.269E+04 0.184E+04 0.142E+04 

State 3 0.616E-01 0.479E-01 0.327E-01 0.245E-01 

The total 0.357E+04 0.269E+04 0.184E+04 0.142E+04 

In the present work, we have performed elastic 

scattering cross section for different neutron 

projectile incident energies (12, 14, 17, and 20 

MeV) in two frames (laboratory and c.m.) 

through subtracting non-elastic cross section 

from overall cross section to 40Ca isotope, as 

seen in fig. (1) 

 

 

 

 

 

 

Figure1(a, b) elastic cross section in 

laboratory system and center of mass 
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By considering coupled channels between 2 

target states and assuming that the projectile 

being employed is a spherical neutron and the 

target is a deformed nucleus (40Ca), the 

analysis of inelastic differential cross-section 

was completed. The parameter of the 

deformation βλ (are (β2= 0.731, β3 = 0.36) fm) 

that correspond to the states of energies of the 

excitation of the low lying states of vibration 2+ 

and 3+ (E2= 10.9MeV, E3=13.5 MeV) 

comparing with experimental one for E2= 11.9 

MeV[18]. Figures 2 and 3 show that the 

behavior regarding such two frames, C.M. and 

lab, behaved similarly with just minor changes 

during the measurements. 

Figure 2 (a, b) inelastic cross section in c. m 

and laboratory system. 

 

 

At comparison to practical differential elastic 

cross sections, computed differential cross-

section for elastic n+40Ca scattering at specific 

energy values in center of mass (c.m.) is shown 

in Figures (3,4). The red dots reflect the 

experimental data, whereas solid line 

represents estimated differential cross section. 

Figures 3 and 4 show that the neutron's Eikonal 

model results in well-defined angle 

dependency for both experimental and 

calculated data. For every energy at different 

angle, experimental data cross-section flexures 

significantly. The goal of this is to account for 

measurement uncertainties that are present in 

experimental data, yet not in the theoretical 

calculations. According to the conclusions of 

the Eikonal model, the cross-section should be 

smaller for larger angles and higher for smaller 

angles. 
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Figure 3 (a,b) comparison of elastic cross 

section for 12,14 MeV neutron energy of 

present work and available experiment 

data[15,16]. 

 

 

 

 

 

 

 

 

Figure (4) Comparison regarding elastic 

cross section for 17 MeV neutron energy of 

present study as well as experiment data[19]. 

 

Both the imaginary and real parts regarding an 

effective potential have been plotted, as seen in 

Figure 5, to see how first-order Eikonal 

modification affected the effective potential. 

The colored solid curves in this figure represent 

the effective potential Ueff (r). The two 

potentials differ significantly, as shown in the 

Figure, particularly in small r regions. The 

terms of correction holding the product of 

imaginary and real potentials as well as their 

derivatives are what cause the effective 

potential to change dramatically. In imaginary 

potential rather than real potential, the degree 

of change is more apparent. As seen in Figure 

5(b), the nominal real potential rises 

monotonically, whereas the effective 

imaginary potential pronounced minimum 

about r = 5fm and after that increases. Surface 

region of colliding nuclei plays a significant 

role in differential cross-section, hence the 

discrepancy in r region (1-4) fm is not 

substantial. 
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Figure 5 (a, b) Imaginary and real optical 

potentials that have been utilized in optical 

model analysis of various energy values 

(MeV) for the elastic scattering. 

 

 

7. Conclusion  

Cross-section measurements for calcium 

neutrons scattered inelastically and elastically 

at 12, 14, 17, and 20 MeV are provided. The 

data cannot be reproduced by any of global 

neutron-nucleus optical model parameter sets 

that are typically cited in literature, particularly 

current cross section. The excitation energy 

range of interest in 40Ca has nuclear structural 

effects that impede a complete explanation of 

the data at all energies. A fair description of 

differential cross section in the neutron-

calcium scattering was accomplished over 

entire energy range that has been analyzed, 

according to outcomes when compared to 

n+40Ca scattering and experiment data. 

Reference 

[1] E. Ideguchi et al., “Electric Monopole 

Transition from the Superdeformed Band 

in $^{40}\mathrm{Ca}$,” Phys. Rev. 

Lett., vol. 128, no. 25, p. 252501, 2022, 

doi: 10.1103/PhysRevLett.128.252501. 

[2] J. C. Y. Chen, C. J. Joachain, and K. M. 

Watson, “Eikonal Theory of Inelastic 

Electron-Atom Scattering at Intermediate 

Energies,” Phys. Rev. A, vol. 5, no. 6, pp. 

2460–2474, 1972, doi: 

10.1103/PhysRevA.5.2460. 

[3] R. H. Shields and R. H. Shields, “Scholars 

’ Mine The eikonal distorted wave Born 

approximation for the excitation of 

hydrogen by impact with hydrogen and 

helium in the intermediate energy range by 

Presented to the Faculty of the Graduate 

School of the,” 1972. 

[4] C. A. Bertulani and H. Sagawa, “Probing 

the ground-state and transition densities of 

halo nuclei,” Nucl. Physics, Sect. A, vol. 

588, no. 3, pp. 667–692, 1995, doi: 

10.1016/0375-9474(95)00022-S. 

[5] K. Planckstr, M. Sciences, and A. Ikki-

machi, “Probing the ground state and 

transition densities of halo nuclei,” no. c. 

[6] C. A. Bertulani, C. M. Campbell, and T. 

Glasmacher, “A computer program for 

nuclear scattering at intermediate and high 

energies,” Comput. Phys. Commun., vol. 

152, no. 3, pp. 317–340, 2003, doi: 



Distorted wave eikonal approximation calculation of elastic and inelastic differential cross sections in c.m. and lab 

frames for 40Ca nuclei  

 

2795 

https://doi.org/10.1016/S0010-

4655(02)00824-X. 

[7] A. N. F. Aleixo, “Nucleon-nucleon 

correlation effects in the elastic scattering 

ofa particles from "Li at 26 MeV/nucleon,” 

Phys. Rev. C, vol. 45, no. 5, 1992. 

[8] G. M. C.A. Bertulani, M.S. Hussein, 

Physics of Radioactive Beams. 

Huntington, New York: Nova Science, 

2002. 

[9] G. R. Satchler, Direct nuclear reactions. 

Oxford; New York: Clarendon Press ; 

Oxford University Press, 1983. 

[10] C. A. Bertulani, P. Danielewicz, and E. 

Lansing, Introduction to Nuclear 

Reactions. East Lansing: Taylor & Francis 

Group, 2003. 

[11] M. S. Hussein, R. A. Rego, and C. A. 

Bertulani, “Microscopic theory of the total 

reaction cross section and application to 

stable and exotic nuclei,” Phys. Rep., vol. 

201, no. 5, pp. 279–334, 1991, doi: 

https://doi.org/10.1016/0370-

1573(91)90037-M. 

[12] A. K. Kerman, H. McManus, and R. M. 

Thaler, “The scattering of fast nucleons 

from nuclei,” Ann. Phys. (N. Y)., vol. 8, 

no. 4, pp. 551–635, 1959, doi: 

https://doi.org/10.1016/0003-

4916(59)90076-4. 

[13] R.J. Glauber, “High-energy collisions 

theory, in: Lectures in Theoretical Physics, 

Interscience,” New York, 1959. 

[14] Herbert Goldstein, 

“Classical_Mechanics.” Addison-Wesley 

Publishing Company, New York, 1980. 

[15] A. J. Koning and J. P. Delaroche, “Local 

and global nucleon optical models from 1 

keV to 200 MeV,” Nucl. Phys. A, vol. 713, 

no. 3, pp. 231–310, 2003, doi: 

https://doi.org/10.1016/S0375-

9474(02)01321-0. 

[16] Naz.t.jarallah, “Study The Deformation 

Parameters (β 2, δ) For Even - Even,” J. 

Coll. Educ., pp. 189–200, 2016. 

[17] B. S. Ishkhanov, M. E. Stepanov, and T. Y. 

Tretyakova, “Nuclear spectroscopy of 40–

48Ca isotopes,” Moscow Univ. Phys. 

Bull., vol. 69, no. 6, pp. 433–456, 2014, 

doi: 10.3103/S0027134914060095. 

[18] S. Raman, C. W. Nestor, and P. Tikkanen, 

“Transition probability from the ground to 

the first-excited 2+ state of even-even 

nuclides,” At. Data Nucl. Data Tables, vol. 

78, no. 1, pp. 1–128, 2001, doi: 

10.1006/adnd.2001.0858. 

[19] J. M. Mueller et al., “Asymmetry 

dependence of nucleon correlations in 

spherical nuclei extracted from a 

dispersive-optical-model analysis,” Phys. 

Rev. C - Nucl. Phys., vol. 83, no. 6, pp. 1–

32, 2011, doi: 

10.1103/PhysRevC.83.064605. 

[20] W. Tornow et al., “Analyzing power and 

differential cross section at 9.9, 11.9 and 

13.9 MeV for Ca(n, n)Ca,” Nucl. Phys. A, 

vol. 385, no. 3, pp. 373–406, 1982, doi: 

https://doi.org/10.1016/0375-

9474(82)90093-8. 


