Quotient-4 Cordial Labeling of Some Unicyclic Graphs and Some Corona of Ladder Graphs

Main Article Content

S. Kavitha, Dr. P. Sumathi


Let G (V, E) be a simple graph of order p and size q. Let φ : V (G)  Z5 – {0} be a function. For each edge set E (G) define the labeling *: E (G) Z4 by *(uv) =  (mod 4) where             (u) (v). The function  is called Quotient-4 cordial labeling of G if |vφ(i) – vφ(j)| ≤ 1,            , j , i j where vφ(x) denote the number of vertices labeled with x and |eφ(k) – eφ(l)| ≤ 1, , , , where eφ(y) denote the number of edges labeled with y. Here some unicyclic graphs such as (Cn; K1,2), Cm(1,2…m), (Cn(2Pm)) and some corona of ladder graphs such as (OL( )  K1 ), (CL( )  K1 ), (SL( )  K1 ), (ML( )  K1 ), (CRL( )  K1), (PL( )  K1 ) , (PCL( )  K1 ) and (HL( )  K1 ) proved to be quotient-4 cordial graphs.

Article Details